In the world of digital computing, the fundamental determinant of performance is the ability to distinguish between an electrical signal representing a 1 or a 0. The speed at which these transitions can be recognized on a system’s internal PCI Express (PCIe) interconnect determines the bandwidth of data that can be transmitted and acted upon. With PCIe Gen5, transitions from 1’s to 0’s must be recognized 32 billion times per second.
The need to keep US and allied troops out of harm’s way, while still pursuing battlefield superiority, increasingly requires a need for battlefield assets throughout the military theater to become fully autonomous. Currently, most unmanned military vehicles are controlled remotely, but the military is expanding the role of autonomy within surface ships, submarine vessels, aircraft, and land vehicles to identify and take action on current and future threats.
In this video, Tom Fries, Government Sales Manager at OSS, does a quick walkthrough of the Rigel Edge Supercomputer. The Rigel Edge Supercomputer brings the power of NVIDIA® HGX™ A100 SXM GPUs to the rugged edge. The HGX A100 4-GPU backplane delivers 78 teraFLOPS of FP64 HPC performance using third generation NVIDIA NVLink™ technology. The GPUs are integrated with OSS PCIe Gen 4.0 expansion technology to take advantage of the latest AMD 3rd Gen EPYC processors while offering four PCIe Gen 4.0 x16 expansion slots for high-speed network interconnect, NVMe storage, or FPGA sensor capture.
Whether it is the food you eat or the package you receive on the porch, everything we touch found its way into a semi-truck at some point. There is a severe shortage of truck drivers and the costs are skyrocketing due to oil prices and inflation, putting at risk this fundamental aspect of American society that we take for granted. Fortunately, there is a solution on the horizon, backed by billions of dollars of investment, in the form of autonomous trucks. Believe it or not, you have likely passed one of these trucks on the highway, as they have logged hundreds of thousands of miles throughout the country.
The latest high-performance computing systems for AI (Artificial Intelligence) applications generate more heat than ever before. Datacenters have begun adoption of immersion cooling solutions that immerse the temperature-sensitive electronics in a non-conductive fluid which efficiently dissipates the heat. In parallel, many AI edge applications are transitioning from low-performing embedded systems to solutions which incorporate more advanced enterprise compute hardware. To solve both the thermal and structural challenges of the rugged edge, system integrators look to immersion cooling technology to meet their environmental specifications.
In today’s high-performance computing technological landscape, there is a stark contrast between the compute capabilities of enterprise hardware in datacenters and low-performing embedded systems in edge and transportable environments. The autonomous trucking industry in particular has seen a growing need for higher performance compute, storage, and networking solutions in its rugged edge environments. While size, weight, and power (SWaP) optimized embedded systems are the long-term objective of the industry, current autonomous trucking development platforms require access to high levels of compute to avoid any bottlenecks imposed upon their critical software developments. When looking to solve the developmental compute need of the autonomous truck industry through enterprise hardware – there are some important factors to consider.