By Braden Cooper, Product Marketing Manager
The most powerful artificial intelligence computing hardware is designed to thrive in a datacenter environment where there is uncapped clean power, near limitless cooling capacity, and a vibration-free environment. The growth of AI use cases in vehicles including automated crop management, autonomous long-haul freight, and military ISR aircraft necessitates the use of datacenter-oriented hardware in vehicles – particularly for initial developments while more customized size, weight, and power (SWaP) optimized embedded platforms are developed. The transition from friendly environmental conditions to the rigors of the road require system designs which mitigate the thermal, structural, and other challenging environmental conditions of the transportable application. The thermal design is in a critical state – with the latest AI-oriented GPUs and CPUs reaching heat flux densities never before seen. Advanced thermal management designs provide a path to solving the heat flux challenge – but each come with advantages and disadvantages in implementation. This infographic highlights some of the methods which can be used to cool systems in AI transportable applications.

View larger as a pdf View text version
The best cooling method depends on many variables – from heat flux density to the SWaP constraints. With these existing technologies and ongoing industry innovation – powerful enterprise hardware can be used to solve the most demanding AI transportable challenges. The next few years are pivotal in the advancement of thermal management within datacenters – as immersion cooling and improved thermal interface materials see wider adoption. Transitioning these same cooling methods to AI Transportables solves the need for higher compute capacity at the location of data generation.
Click to share this blog post!
_______________________________________________________________________________________
The character of modern warfare is being reshaped by data. Sensors, autonomy, electronic warfare, and AI-driven decision systems are now decisive advantages, but only if compute power can be deployed fast enough and close enough to the fight. This reality sits at the center of recent guidance from the Trump administration and Secretary of War Pete Hegseth, who has repeatedly emphasized that “speed wins; speed dominates” and that advanced compute must move “from the data center to the battlefield.”
OSS specializes in taking the latest commercial GPU, FPGA, NIC, and NVMe technologies, the same acceleration platforms driving hyperscale data centers, and delivering them in rugged, deployable systems purpose-built for U.S. military platforms. At a moment when the Department of War is prioritizing speed, adaptability, and commercial technology insertion, OSS sits at the intersection of performance, ruggedization, and rapid deployment.
Maritime dominance has long been a foundation of U.S. national security and allied stability. Control of the seas enables freedom of navigation, power projection, deterrence, and protection of global trade routes. As the maritime battlespace becomes increasingly contested, congested, and data-driven, dominance is no longer defined solely by the number of ships or missiles, but by the ability to sense, decide, and act faster than adversaries. Rugged High Performance Edge Compute (HPeC) solutions have become a decisive enabler of this advantage.
At the same time, senior Department of War leadership—including directives from the Secretary of War—has made clear that maintaining superiority requires rapid integration of advanced commercial technology into military platforms at the speed of need. Traditional acquisition timelines measured in years are no longer compatible with the pace of technological change or modern threats. Rugged HPeC solutions from One Stop Systems (OSS) directly addresses this challenge.
Initial design and prototype order valued at approximately $1.2 million
Integration of OSS hardware into prime contractor system further validates OSS capabilities for next-generation 360-degree vision and sensor processing solutions
ESCONDIDO, Calif., Jan. 07, 2026 (GLOBE NEWSWIRE) -- One Stop Systems, Inc. (OSS or the Company) (Nasdaq: OSS), a leader in rugged Enterprise Class compute for artificial intelligence (AI), machine learning (ML) and sensor processing at the edge, today announced it has received an approximately $1.2 million pre-production order from a new U.S. defense prime contractor for the design, development, and delivery of ruggedized integrated compute and visualization systems for U.S. Army combat vehicles.