Menu

Defining the Stages of Autonomous Driving

January 10, 2023

Defining the Stages of Autonomous Driving

By Martin Stiborski, Managing Director, BRESSNER Technology

Driver Assistance, Partial Driving Automation, Conditional Driving Automation, High Driving Automation, Full Driving Automation: These terms describe the five stages or levels on the way to an autonomous vehicle. This is what they mean. 

First stage: Driver Assistance

  • The driver is constantly in control of the vehicle
  • The driver must constantly keep an eye on the traffic
  • The driver is liable for traffic violations and damages
  • Individual assistance systems provide support for certain driving tasks

Assisted driving is already a common feature in many vehicles today. For example, cruise control ensures that the selected speed is maintained, and automatic adaptive cruise control (ACC) brakes or accelerates the vehicle depending on the distance to the vehicle or truck in front. This ensures that the safe distance is not undercut. The automatic Lane Keeping Assistant System (LKAS) is also becoming increasingly common.

Second Stage: Partial Driving Automation

  • The driver is constantly in control of the vehicle
  • The driver must constantly keep an eye on the traffic
  • The driver is liable for traffic violations and damages
  • The vehicle maintains the lane, brakes and accelerates under defined conditions on its own

In semi-automated driving, the vehicle can temporarily perform some tasks itself - without any human intervention. For example, a Level 2 vehicle can maintain in its lane, braking and accelerating on the highway at the same time.

To achieve this, vehicle manufacturers combine various individual systems with each other - in this case, the automatic proximity control system with the emergency braking assistant and the lane departure warning system. The overtaking assistant is also a Level 2 function. So is automatic parking, where the driver no longer must reach for the steering wheel. Tesla's Autopilot, for example has these capabilities.

In comparison to assisted driving at Level 1, the driver of Level 2 vehicles can briefly take his hands off the wheel when the vehicle is in semi-automated mode. However, he must always monitor the assistance systems and correct any malfunctions. The driver would be responsible for an accident - even if his vehicle did not report a malfunction.

Autonomous Driving

Third Stage: Conditional Driving Automation

  • The driver is allowed to temporarily distract himself from the driving task and traffic
  • In scenarios specified by the manufacturer, the vehicle drives autonomously
  • The driver must take over at short notice when requested by the system

Highly automated vehicles (Level 3) can perform certain driving tasks autonomously and without human intervention, but only for a limited period of time and under suitable conditions specified by the manufacturer. They overtake, brake, accelerate - depending on the traffic situation.

Level 3 vehicles will probably be on the road on highways first: There, there is no oncoming traffic, the lane markings are generally in proper condition, and the roads are continuously recorded as digital maps. As soon as the driver puts his vehicle into highly automated mode, he is allowed to turn his attention away from the traffic. This means, for example, that they can read the newspaper or turn their attention to the passengers in the back seats. However, if the system detects a problem and sends a signal, the driver must take over the wheel immediately.

Fourth Stage: High Driving Automation

  • The driver can completely delegate the control of the vehicle and becomes a passenger
  • The vehicle can drive completely independently on certain routes (e.g. highway, parking garage). The vehicle is then allowed to drive without passengers
  • Passengers are allowed to sleep, use their smartphone or read the newspaper
  • The system recognizes its limits in time to reach a safe state in accordance with the rules

In the development departments of the major vehicle companies, as well as at Apple, Google and Uber, engineers and computer scientists are working flat out on the full automation of the vehicle, i.e. level 4 on the road to autonomous driving. At this level, the technical systems perform all driving tasks automatically, and the vehicle can also cover longer distances without intervention.

The vehicle could therefore enter the highway, merge into traffic even at high speed, follow the lane, signal, overtake, brake if necessary, accelerate and finally leave the highway again.

At the end of such a fully automated journey, the occupants can take over the wheel again. However, if they are unable to do so or do not want to, the vehicle must reach a safe state and head for a parking space, for example. To achieve stage 4 in autonomous vehicles, powerful AI inference hardware supporting many different inferencing engines operating and coordinating simultaneously is required.

Fifth Stage: Full Driving Automation

  • There are now only passengers without driving task
  • Driving without passengers is possible
  • The technology in the vehicle handles all traffic situations

The fifth and final stage completes autonomous driving. The vehicle is now completely guided by the system and performs all the necessary tasks automatically. The autonomous vehicle can even handle complex situations - such as crossing an intersection, driving through a traffic circle or behaving correctly at a crosswalk. There is no longer a driver, only passengers.

Click the buttons below to share this blog post!

Return to the main Blog page




Leave a comment

Comments will be approved before showing up.


Also in One Stop Systems Blog

Advantages and Disadvantages of Implementing AI Inference Nodes on Soldiers
Advantages and Disadvantages of Implementing AI Inference Nodes on Soldiers

January 15, 2025

The integration of artificial intelligence (AI) into military operations has revolutionized battlefield strategies, decision-making, and operational efficiency. Among these advancements, AI inference nodes deployed directly on soldiers represents a cutting-edge innovation. These nodes, compact computational devices, enable real-time AI processing and analytics, empowering soldiers with enhanced situational awareness, decision support, and operational effectiveness. However, such technology also brings challenges, particularly in power management, size, and weight constraints. This blog delves into the advantages and disadvantages of implementing AI inference nodes on soldiers, focusing on these critical aspects.

Continue Reading

Composable Infrastructure:  Dynamically Changing IT Infrastructure
Composable Infrastructure: Dynamically Changing IT Infrastructure

May 01, 2024

The evolution of IT infrastructure spans several decades and is marked by significant advancements in computing technology, networking, storage, and management practices. Data Centers have historically relied on Converged or Hyper-Converged infrastructures when deploying their hardware which proved to limited in flexibility, efficiency, scalability, and support for the Artificial Intelligence / Machine Learning (AI/ML) modern workloads of today. 

Continue Reading

Edge Computing
The Four Types of Edge Computing

April 17, 2024

“Edge Computing” is a term which has been widely adopted by the tech sector. Dominant leaders in accelerated computing have designated “Edge” as one of their fastest-growing segments, with FY24 revenue projected to be nearly $100 billion. The boom in the market for Edge Computing has become so significant that it is increasingly common to see companies create their own edge-related spinoff terms such as ‘Rugged Edge’, ‘Edge AI’, ‘Extreme Edge’, and a whole slew of other new buzzwords. 

Continue Reading

You are now leaving the OSS website