PCIe vs. 5G: The Importance of HPC at the Edge

August 09, 2022

PCIe vs. 5G: The Importance of HPC at the Edge

By Jaan Mannik, Director of Commercial Sales

Most of us are familiar with or have at least heard the term ‘Edge’ or ‘Edge Computing’ when discussing new high-performance computing (HPC) technologies around the Internet of Things (IoT), Cloud Computing, Autonomous Vehicles, etc. How many of us can explain the different levels of performance between PCIe and 5G, in relation to edge computing? Moreover, why is it important when discussing (HPC) at the edge? In this post, we’ll take an in-depth look at the increasing need for greater performance at the edge and what HPC applications benefit from PCIe vs. 5G.

USB 5G Wi-Fi Adapter

PCI Express (PCIe) is a high-speed serial computer bus standard found on virtually every motherboard today, and connects peripheral components like GPUs, SSDs, networking, and other various I/O devices, to the CPU running in a computer. Even things like your mouse, monitor, and keyboard leverage this high-performance bus standard by simply converting the PCIe protocol to something else such as USB, HDMI, ethernet, etc. Simply put, if it’s connected to your computer, it’s interfacing with your computer’s brain (CPU) over PCIe.

Now to be fair, 5G wireless adapters like the one shown here, technically use PCIe (converted from USB in this example) to function properly in your computer in the same manner your mouse does, so to compare the two may seem a bit questionable. However, both of these technologies play a major role in the evolution of edge computing as we know it today, as well as where we are headed tomorrow.

I often hear people talking about 5G technology as if it’s going change the world by creating a high-performance, robust, global wireless network to better enable cell phones, IoT devices, edge computers, and even cars to one day drive autonomously. These devices are connected over 5G to a centralized cloud/datacenter where most the heavy lifting (compute and storage functions) is done. This technology works well for dashcams, sensors, security cameras, and infotainment systems, because they can rely on the performance of 5G. Theoretical performance of 5G is said to be up to 10Gb/s but the actual performance is closer to 1Gb/s. That’s right, this blazing fast 5G technology we’ve all been waiting for is almost as fast as your old 1Gigabit wired ethernet connection you complain about at the office.

In steps PCIe. While some companies like OSS have already begun shipping PCIe Gen 5 product, the current PCIe Gen 4 is widely adopted today and used in enterprise class HPC datacenter environments supporting top of the line GPU compute clusters and NVMe flash storage arrays. Since a standard 16-lane PCIe Gen 4 data path can support 256Gb/s, it’s considered one of the highest performing, lowest latency and most secure connections on the planet. For HPC edge applications which require ‘datacenter level’ types of performance such as autonomous driving, medical imaging, media & entertainment, battlefield mobility, etc., they want to bring the power of the datacenter to the edge. This can be achieved by utilizing the same enterprise class CPUs, GPUs, SSDs and optimizing them for use in non-traditional environments closer to the edge. Data center performance at the very edge offers performance without compromise where action must take place NOW.

Edge Computing

Edge computing is seeing an increased deployment of heterogeneous HPC systems with PCIe interconnect, due to its performance advantages around data processing for AI/ML workloads, high-speed NVMe storage, ingest, and inferencing. This is quite a paradigm shift from the more traditional approach of those AI tasks being completed in the Cloud. More data will be processed, stored, and analyzed at the edge to help deliver better performance, lower latency, improved reliability, security, and privacy. In 2018, only 10% of generated data for HPC applications was created and processed on the edge. Recent edge computing market trends indicate that by 2025, data processed at the edge is expected to grow to 75%. As this market continues to grow, so does the need for greater performance. 5G is a great advancement in wireless technology, which can be leveraged by smaller systems and IoT devices; however, don’t expect it to steer your car for you anytime soon.

Click the buttons below to share this blog post!

Return to the main Blog page

Leave a comment

Comments will be approved before showing up.

Also in One Stop Systems Blog

Autonomous Vehicles Industry
Meeting the Data Storage Demands of the Autonomous Vehicles Industry

September 20, 2022

As the forefront of the development of artificial intelligence and a key application within One Stop Systems’ “AI Transportable” industry, autonomous vehicles present an opportunity for innovation in designing ruggedized servers and high-capacity storage products. While none of the vehicles on the road today are truly self-driving, progress is being steadily made towards systems that can successfully predict and navigate everyday traffic. Autonomous cars and trucks being currently deployed are capable of driving with limited operator input, it is predicted that fully autonomous vehicles will be widely available by the end of the decade. One Stop Systems has had the unique opportunity to support this progression by developing products catered to the extensive storage needs of the autonomous vehicles industry.

Continue Reading

OOB System Management
Out-of-Band Management for Compute Systems on the Edge

September 13, 2022

Out-of-Band (OOB) system management is a staple of the modern datacenter. The tools used by administrators have matured over the last 20 years to provide a variety of mission critical features for managing, monitoring, configuring, and updating computer systems independent of the host system’s resources. Intel led the way in the early days by defining a set of interface specifications for basic system management in 1998 called the Intelligent Platform Management Interface (IPMI). Over the next 20 years, 200+ computer vendors joined support for the IPMI specifications. While IPMI has served us well over the years, it is showing its age with a myriad of security concerns and use of legacy standards that make managing modern hybrid infrastructures difficult and complicated. 

Continue Reading

When will automobiles be fully autonomous on the road?
When will Automobiles be Fully Autonomous on the Road?

August 30, 2022

The idea and dream of a fully autonomous car is almost 100 years old. It was first formulated in the US magazine Scientific American. The reason for this was presumably the "American Wonder", a remote-controlled car that drove through Manhattan in 1925. After almost a century, it seems that the automotive industry is on the verge of reaching its goal of having driverless and fully autonomous vehicles participate in everyday traffic.  But when will it finally come? To answer this question, we need to examine the reasons why vehicles are not yet fully autonomous. 

Continue Reading

You are now leaving the OSS website