Menu

Is 5G Fast Enough for the Edge?

April 26, 2022

Is 5G Fast Enough for the Edge?

By Martin Stiborski, Managing Director, BRESSNER Technology

5G networks are the key for a worldwide digital transformation, impacting AI and edge computing as well as smart cities, while also providing high-speed data transfer in real-time for enterprises across every vertical market segment. New applications are constantly emerging on the market, taking advantage of the cellular networks’ super-low latency and much higher bandwidth. 

Radio waves with lower frequencies are used for farther travel distances, while higher frequencies can carry more data. 5G runs on radio frequencies ranging from below 1 GHz all the way up to very high “millimeter wave” (mmWave), achieving data speeds up to 10Gbps, but is capable of peak data rates up to 20Gbps, in theory. It is currently among the most viable options for facilitating edge computing applications such as autonomous driving, augmented reality or smart cities. 

But is it really fast enough to keep up with the most demanding edge computing applications?

Before we can answer this question, let’s take a look at the most commonly known and most bandwidth-hungry edge computing application: Fully autonomous driving. There are three major types of technologies which are needed for autonomous vehicles to interact with their environment: 

  • Environment information capturing such as cameras, RADAR and LIDAR
  • Direct vehicle-to-everything (V2X) communication based on Wi-Fi protocol 802.11p (DSRC/ITS-G5) or cellular V2X technology (C-V2X)
  • Carrier-based V2X communication based on long-range cellular networks 

It is widely assumed that the latest 5G-network standard will help improve the safety of autonomous cars by providing long-range C-V2X communication, which is a primary requirement.

5G-network

Even at lower level autonomy, connected level 5 cars generate about 25 gigabytes per hour. As complexity of the architecture increases, so does the number of car automation sensors. The combined bandwidth of RADAR, LIDAR, cameras, ultrasonic, etc. can reach up to 40Gbps. As a reference, Tesla’s autopilot system already generates up to 28Gbps with 8 integrated cameras and 12 ultrasonic sensors. The real question, however, is which type of information needs to be transmitted, and if it’s time-critical or not. 

Autonomous driving field tests on German highways such as A9 have shown that even LTE networks can handle latencies of 15 milliseconds. Most time-critical information such as traffic alerts, moving-car data, map updates and critical sensor data have latency requirements of up to 100 milliseconds. Therefore, 5G should be sufficient for enabling more advanced levels of security in autonomous driving, and any other high-speed data transmission at the edge, assuming that the relevant areas are covered with enough network capacity to handle the demand.

Click the buttons below to share this blog post!

Return to the main Blog page





Also in One Stop Systems Blog

Uncle Sam Wants GP(You)!
Uncle Sam Wants GP(You)!

January 28, 2026

The character of modern warfare is being reshaped by data. Sensors, autonomy, electronic warfare, and AI-driven decision systems are now decisive advantages, but only if compute power can be deployed fast enough and close enough to the fight. This reality sits at the center of recent guidance from the Trump administration and Secretary of War Pete Hegseth, who has repeatedly emphasized that “speed wins; speed dominates” and that advanced compute must move “from the data center to the battlefield.” 

OSS specializes in taking the latest commercial GPU, FPGA, NIC, and NVMe technologies, the same acceleration platforms driving hyperscale data centers, and delivering them in rugged, deployable systems purpose-built for U.S. military platforms. At a moment when the Department of War is prioritizing speed, adaptability, and commercial technology insertion, OSS sits at the intersection of performance, ruggedization, and rapid deployment. 

Continue Reading

Rugged High Performance Edge Compute: Delivering Maritime Dominance at the Speed of Need
Rugged High Performance Edge Compute: Delivering Maritime Dominance at the Speed of Need

January 21, 2026

Maritime dominance has long been a foundation of U.S. national security and allied stability. Control of the seas enables freedom of navigation, power projection, deterrence, and protection of global trade routes. As the maritime battlespace becomes increasingly contested, congested, and data-driven, dominance is no longer defined solely by the number of ships or missiles, but by the ability to sense, decide, and act faster than adversaries. Rugged High Performance Edge Compute (HPeC) solutions have become a decisive enabler of this advantage.

At the same time, senior Department of War leadership—­­including directives from the Secretary of War—has made clear that maintaining superiority requires rapid integration of advanced commercial technology into military platforms at the speed of need. Traditional acquisition timelines measured in years are no longer compatible with the pace of technological change or modern threats. Rugged HPeC solutions from One Stop Systems (OSS) directly addresses this challenge.

Continue Reading

OSS Announces New Partnership with Leading U.S. Defense Prime to Develop Enhanced Integrated Vision System for U.S. Army
OSS Announces New Partnership with Leading U.S. Defense Prime to Develop Enhanced Integrated Vision System for U.S. Army

January 07, 2026

Initial design and prototype order valued at approximately $1.2 million

Integration of OSS hardware into prime contractor system further validates OSS capabilities for next-generation 360-degree vision and sensor processing solutions

ESCONDIDO, Calif., Jan. 07, 2026 (GLOBE NEWSWIRE) -- One Stop Systems, Inc. (OSS or the Company) (Nasdaq: OSS), a leader in rugged Enterprise Class compute for artificial intelligence (AI), machine learning (ML) and sensor processing at the edge, today announced it has received an approximately $1.2 million pre-production order from a new U.S. defense prime contractor for the design, development, and delivery of ruggedized integrated compute and visualization systems for U.S. Army combat vehicles.

Continue Reading

You are now leaving the OSS website